A holor (/ˈhoʊlər/; Greek ὅλος "whole") is a mathematical entity that is made up of one or more independent quantities ("merates" as they are called in the theory of holors). Complex numbers, scalars, vectors, matrices, tensors, quaternions, and other hypercomplex numbers are kinds of holors. If proper index conventions are maintained then certain relations of holor algebra are consistent with that of real algebra; i.e. addition and uncontracted multiplication are both commutative and associative.
The term holor was coined by Parry Moon and Domina Eberle Spencer. Moon and Spencer classify holors as either nongeometric objects or geometric objects. They further classify the geometric objects as either oudors or akinetors, where the (contravariant) akinetors transform as
and the oudors contain all other geometric objects (such as Christoffel symbols). The tensor is a special case of the akinetor where . Akinetors correspond to pseudotensors in standard nomenclature.