*** Welcome to piglix ***

History of the Teller–Ulam design


This article chronicles the history and origins of the Teller–Ulam design, the technical concept behind modern thermonuclear weapons, also known as hydrogen bombs. This design, the details of which are military secrets known to only a handful of major nations, is believed to be used in virtually all modern nuclear weapons which make up the arsenals of the major nuclear powers.

The idea of using the energy from a fission device to begin a fusion reaction was first proposed casually by the Italian physicist Enrico Fermi to his colleague Edward Teller in the fall of 1941 during what would soon become the Manhattan Project, the World War II effort by the United States and United Kingdom to develop the first nuclear weapons. Teller soon was a participant at Robert Oppenheimer's summer conference on the development of a fission bomb held at the University of California, Berkeley, where he guided discussion towards the idea of creating his "Super" bomb, which would hypothetically be many times more powerful than the yet-undeveloped fission weapon. Teller assumed creating the fission bomb would be nothing more than an engineering problem, and that the "Super" provided a much more interesting theoretical challenge.

For the remainder of the war, however, the effort was focused on first developing fission weapons. Nevertheless, Teller continued to pursue the "Super", to the point of neglecting work assigned to him for the fission weapon at the secret Los Alamos lab where he worked (much of the work Teller declined to do was given instead to Klaus Fuchs, who was later discovered to be a spy for the Soviet Union). Teller was given some resources with which to study the "Super", and contacted his friend Maria Göppert-Mayer to help with laborious calculations relating to opacity. The "Super", however, proved elusive, and the calculations were incredibly difficult to perform, especially since there was no existing way to run small-scale tests of the principles involved (in comparison, the properties of fission could be more easily probed with cyclotrons, newly created nuclear reactors, and various other tests).


...
Wikipedia

...