The history of molecular biology begins in the 1930s with the convergence of various, previously distinct biological and physical disciplines: biochemistry, genetics, microbiology, virology and physics. With the hope of understanding life at its most fundamental level, numerous physicists and chemists also took an interest in what would become molecular biology.
In its modern sense, molecular biology attempts to explain the phenomena of life starting from the macromolecular properties that generate them. Two categories of macromolecules in particular are the focus of the molecular biologist: 1) nucleic acids, among which the most famous is deoxyribonucleic acid (or DNA), the constituent of genes, and 2) proteins, which are the active agents of living organisms. One definition of the scope of molecular biology therefore is to characterize the structure, function and relationships between these two types of macromolecules. This relatively limited definition will suffice to allow us to establish a date for the so-called "molecular revolution", or at least to establish a chronology of its most fundamental developments.
In its earliest manifestations, molecular biology—the name was coined by Warren Weaver of the Rockefeller Foundation in 1938—was an idea of physical and chemical explanations of life, rather than a coherent discipline. Following the advent of the Mendelian-chromosome theory of heredity in the 1910s and the maturation of atomic theory and quantum mechanics in the 1920s, such explanations seemed within reach. Weaver and others encouraged (and funded) research at the intersection of biology, chemistry and physics, while prominent physicists such as Niels Bohr and Erwin Schrödinger turned their attention to biological speculation. However, in the 1930s and 1940s it was by no means clear which—if any—cross-disciplinary research would bear fruit; work in colloid chemistry, biophysics and radiation biology, crystallography, and other emerging fields all seemed promising.