*** Welcome to piglix ***

Hilbert-style system



In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

Most variants of Hilbert systems take a characteristic tack in the way they balance a trade-off between logical axioms and rules of inference. Hilbert systems can be characterised by the choice of a large number of schemes of logical axioms and a small set of rules of inference. Systems of natural deduction take the opposite tack, including many deduction rules but very few or no axiom schemes. The most commonly studied Hilbert systems have either just one rule of inference — modus ponens, for propositional logics — or two — with generalisation, to handle predicate logics, as well — and several infinite axiom schemes. Hilbert systems for propositional modal logics, sometimes called Hilbert-Lewis systems, are generally axiomatised with two additional rules, the necessitation rule and the uniform substitution rule.

A characteristic feature of the many variants of Hilbert systems is that the context is not changed in any of their rules of inference, while both natural deduction and sequent calculus contain some context-changing rules. Thus, if we are interested only in the derivability of tautologies, no hypothetical judgments, then we can formalize the Hilbert system in such a way that its rules of inference contain only judgments of a rather simple form. The same cannot be done with the other two deductions systems: as context is changed in some of their rules of inferences, they cannot be formalized so that hypothetical judgments could be avoided — not even if we want to use them just for proving derivability of tautologies.


...
Wikipedia

...