*** Welcome to piglix ***

Higher unit group


In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology. Given such a field, an absolute value can be defined on it. There are two basic types of local fields: those in which the absolute value is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

Every local field is isomorphic (as a topological field) to one of the following:

There is an equivalent definition of non-Archimedean local field: it is a field that is complete with respect to a discrete valuation and whose residue field is finite. However, some authors consider a more general notion, requiring only that the residue field be perfect, not necessarily finite. This article uses the former definition.

Given a locally compact topological field K, an absolute value can be defined as follows. First, consider the additive group of the field. As a locally compact topological group, it has a unique (up to positive scalar multiple) Haar measure μ. The absolute value is defined so as to measure the change in size of a set after multiplying it by an element of K. Specifically, define |·| : KR by

for any measurable subset X of K (with 0 < μ(X) < ∞). This absolute value does not depend on X nor on the choice of Haar measure (since the same scalar multiple ambiguity will occur in both the numerator and the denominator). This definition is very similar to that of the modular function.


...
Wikipedia

...