A directional antenna or beam antenna is an antenna which radiates or receives greater power in specific directions allowing for increased performance and reduced interference from unwanted sources. Directional antennas provide increased performance over dipole antennas – or omnidirectional antennas in general – when greater concentration of radiation in a certain direction is desired.
A high-gain antenna (HGA) is a directional antenna with a focused, narrow radiowave beam width. This narrow beam width allows more precise targeting of the radio signals. Most commonly referred to during space missions, these antennas are also in use all over Earth, most successfully in flat, open areas where no mountains lie to disrupt radiowaves. By contrast, a low-gain antenna (LGA) is an omnidirectional antenna with a broad radiowave beam width, that allows for the signal to propagate reasonably well even in mountainous regions and is thus more reliable regardless of terrain. Low gain antennas are often used in spacecraft as a backup to the high-gain antenna, which transmits a much narrower beam and is therefore susceptible to loss of signal.
All practical antennas are at least somewhat directional, although usually only the direction in the plane parallel to the earth is considered, and practical antennas can easily be omnidirectional in one plane. The most common types are the Yagi antenna, the log-periodic antenna, and the corner reflector antenna, which are frequently combined and commercially sold as residential TV antennas. Cellular repeaters often make use of external directional antennas to give a far greater signal than can be obtained on a standard cell phone. Satellite Television receivers usually use parabolic antennas. For long and medium wavelength frequencies, tower arrays are used in most cases as directional antennas.