*** Welcome to piglix ***

High Frequency

High frequency
Frequency range
3 to 30 MHz
Wavelength range
100 to 10 m

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 MHz. It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred metres). Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances. The band is used by international shortwave broadcasting stations (2.310 - 25.820 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

The dominant means of long distance communication in this band is skywave (skip) propagation, in which radio waves directed at an angle into the sky reflect (actually refract) back to Earth from layers of ionized atoms in the ionosphere. By this method HF radio waves can travel beyond the horizon, around the curve of the Earth, and can be received at intercontinental distances. However, suitability of this portion of the spectrum for such communication varies greatly with a complex combination of factors:

At any point in time, for a given "skip" communication path between two points, the frequencies at which communication is possible are specified by these parameters

The maximum usable frequency regularly drops below 10 MHz in darkness during the winter months, while in summer during daylight it can easily surpass 30 MHz. It depends on the angle of incidence of the waves; it is lowest when the waves are directed straight upwards, and is higher with less acute angles. This means that at longer distances, where the waves graze the ionosphere at a very blunt angle, the MUF may be much higher. The lowest usable frequency depends on the absorption in the lower layer of the ionosphere (the D-layer). This absorption is stronger at low frequencies and is also stronger with increased solar activity (for example in daylight); total absorption often occurs at frequencies below 5 MHz during daytime. The result of these two factors is that the usable spectrum shifts towards the lower frequencies and into the Medium Frequency (MF) range during winter nights, while on a day in full summer the higher frequencies tend to be more usable, often into the lower VHF range.


...
Wikipedia

...