A high-voltage cable (HV cable) is a cable used for electric power transmission at high voltage. A cable includes a conductor and insulation, and is suitable for being run underground or underwater. This is in contrast to an overhead line, which does not have insulation. High-voltage cables of differing types have a variety of applications in instruments, ignition systems, and AC and DC power transmission. In all applications, the insulation of the cable must not deteriorate due to the high-voltage stress, ozone produced by electric discharges in air, or tracking. The cable system must prevent contact of the high-voltage conductor with other objects or persons, and must contain and control leakage current. Cable joints and terminals must be designed to control the high-voltage stress to prevent breakdown of the insulation. Often a high-voltage cable will have a metallic shield layer over the insulation, connected to the ground and designed to equalize the dielectric stress on the insulation layer.
High-voltage cables may be any length, with relatively short cables used in apparatus, longer cables run within buildings or as buried cables in an industrial plant or for power distribution, and the longest cables often run as submarine cables under the ocean for power transmission.
Like other power cables, high-voltage cables have the structural elements of one or more conductors, insulation, and a protective jacket. High-voltage cables differ from lower-voltage cables in that they have additional internal layers in the insulation jacket to control the electric field around the conductor.
For circuits operating at or above 2,000 volts between conductors, a conductive shield may surround each insulated conductor. This equalizes electrical stress on the cable insulation. This technique was patented by Martin Hochstadter in 1916; the shield is sometimes called a Hochstadter shield. The individual conductor shields of a cable are connected to the ground at the ends of the shield, and at splices. Stress relief cones are applied at the shield ends.
Cables for power distribution of 10 kV or higher may be insulated with oil and paper, and are run in a rigid steel pipe, semi-rigid aluminum or lead sheath. For higher voltages the oil may be kept under pressure to prevent formation of voids that would allow partial discharges within the cable insulation.