*** Welcome to piglix ***

High-altitude platform


High-altitude platform station (short: HAPS) is – according to Article 1.66A of the International Telecommunication Union´s (ITU) ITU Radio Regulations (RR) – defined as "a station on an object at an altitude of 20 to 50 km and at a specified, nominal, fixed point relative to the Earth".

Each station shall be classified by the service in which it operates permanently or temporarily.

A HAP can be a manned or unmanned airplane, a balloon, or an airship. All require electrical power to keep themselves and their payload functional. While current HAPS are powered by batteries or engines, mission time is limited by the need for recharging/refueling. Therefore, alternative means are being considered for the future. Solar cells are one of the best options currently being used under trial for HAPS (Helios, Lindstrand HALE).

Whether an airship or an aeroplane, a major challenge is the ability of the HAP to maintain stationkeeping in the face of winds. An operating altitude between 17 and 22 km is chosen because in most regions of the world this represents a layer of relatively mild wind and turbulence above the jet stream. Although the wind profile may vary considerably with latitude and with season, a form similar to that shown will usually obtain. This altitude (> 17 km) is also above commercial air-traffic heights, which would otherwise prove a potentially prohibitive constraint.

Since HAPS operate at much lower altitudes than satellites, it is possible to cover a small region much more effectively. Lower altitude also means much lower telecommunications link budget (hence lower power consumption) and smaller round-trip delay compared to satellites. Furthermore, deploying a satellite requires significant time and monetary resources, in terms of development and launch. HAPS, on the other hand, are comparatively less expensive and are rapidly deployable. Another major difference is that a satellite, once launched, cannot be landed for maintenance, while HAPS can.

One of latest uses of HAPS has been for radiocommunication service. Research on HAPS is being actively carried largely in Europe, where scientists are considering them as a platform to deliver high-speed connectivity to users, over areas of up to 400 km. It has gained significant interest because HAPS will be able to deliver bandwidth and capacity similar to a broadband wireless access network (such as WiMAX) while providing a coverage area similar to that of a satellite.


...
Wikipedia

...