Historically, in physics, hidden variable theories were espoused by some physicists who argued that the state of a physical system, as formulated by quantum mechanics, does not give a complete description for the system; i.e., that quantum mechanics is ultimately incomplete, and that a complete theory would provide descriptive categories to account for all observable behavior and thus avoid any indeterminism. The existence of indeterminacy for some measurements is a characteristic of prevalent interpretations of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle.
Albert Einstein, the most famous proponent of hidden variables, objected to the fundamentally probabilistic nature of quantum mechanics, and famously declared "I am convinced God does not play dice". Einstein, Podolsky, and Rosen argued that "elements of reality" (hidden variables) must be added to quantum mechanics to explain entanglement without action at a distance. Later, Bell's theorem suggested that local hidden variables of certain types are impossible, or that they evolve non-locally. A famous non-local theory is De Broglie–Bohm theory.
Under the Copenhagen interpretation, quantum mechanics is non-deterministic, meaning that it generally does not predict the outcome of any measurement with certainty. Instead, it indicates what the probabilities of the outcomes are, with the indeterminism of observable quantities constrained by the uncertainty principle. The question arises whether there might be some deeper reality hidden beneath quantum mechanics, to be described by a more fundamental theory that can always predict the outcome of each measurement with certainty: if the exact properties of every subatomic particle were known the entire system could be modeled exactly using deterministic physics similar to classical physics.