*** Welcome to piglix ***

Hexomino


A hexomino (or 6-omino) is a polyomino of order 6, that is, a polygon in the plane made of 6 equal-sized squares connected edge-to-edge. The name of this type of figure is formed with the prefix . When rotations and reflections are not considered to be distinct shapes, there are 35 different free hexominoes. When reflections are considered distinct, there are 60 one-sided hexominoes. When rotations are also considered distinct, there are 216 fixed hexominoes.

The figure shows all possible free hexominoes, coloured according to their symmetry groups:

If reflections of a hexomino are considered distinct, as they are with one-sided hexominoes, then the first and fourth categories above would each double in size, resulting in an extra 25 hexominoes for a total of 60. If rotations are also considered distinct, then the hexominoes from the first category count eightfold, the ones from the next three categories count fourfold, and the ones from the last category count twice. This results in 20 × 8 + (6+2+5) × 4 + 2 × 2 = 216 fixed hexominoes.

Each of the 35 hexominoes satisfies the Conway criterion; hence every hexomino is capable of tiling the plane.

Although a complete set of 35 hexominoes has a total of 210 squares, it is not possible to pack them into a rectangle. (Such an arrangement is possible with the 12 pentominoes which can be packed into any of the rectangles 3 × 20, 4 × 15, 5 × 12 and 6 × 10.) A simple way to demonstrate that such a packing of hexominoes is not possible is via a parity argument. If the hexominoes are placed on a checkerboard pattern, then 11 of the hexominoes will cover an even number of black squares (either 2 white and 4 black or vice versa) and 24 of the hexominoes will cover an odd number of black squares (3 white and 3 black). Overall, an even number of black squares will be covered in any arrangement. However, any rectangle of 210 squares will have 105 black squares and 105 white squares.


...
Wikipedia

...