|
|||
Names | |||
---|---|---|---|
IUPAC name
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane
|
|||
Other names
|
|||
Identifiers | |||
3D model (Jmol)
|
|||
Abbreviations | CL-20, HNIW | ||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.114.169 | ||
PubChem CID
|
|||
|
|||
|
|||
Properties | |||
C 6N 12H 6O 12 |
|||
Molar mass | 438.1850 g mol−1 | ||
Density | 2.044 g cm−3 | ||
Explosive data | |||
Detonation velocity | 9.38 km s−1 | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
what is ?) | (|||
Infobox references | |||
Hexanitrohexaazaisowurtzitane /ˈhɛksɑːˈnaɪtroʊˈhɛksɑːˌæzɑːˌaɪsoʊˈvʊərtsɪteɪn/, also called HNIW and CL-20, is a nitroamine explosive with the formula C6H6N12O12. The structure of CL-20 was first proposed in 1979 by Dalian Institute of Chemical Physics. In 1980s, CL-20 was developed by the China Lake facility, primarily to be used in propellants. It has a better oxidizer-to-fuel ratio than conventional HMX or RDX. It releases 20% more energy than traditional HMX-based propellants, and is widely superior to conventional high-energy propellants and explosives.
Industrial production of CL-20 was achieved in China in 2011, and it was soon fielded in propellant of solid rockets. While most development of CL-20 has been fielded by the Thiokol Corporation, the US Navy (through ONR) has also been interested in CL-20 for use in rocket propellants, such as for missiles, as it has lower observability characteristics such as less visible smoke.