*** Welcome to piglix ***

Hexagrammum Mysticum Theorem


In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem) states that if six arbitrary points are chosen on a conic (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon.

The theorem is also valid in the Euclidean plane, but the statement needs to be adjusted to deal with the special cases when opposite sides are parallel.

The most natural setting for Pascal's theorem is in a projective plane since all lines meet and no exceptions need be made for parallel lines. However, with the correct interpretation of what happens when some opposite sides of the hexagon are parallel, the theorem remains valid in the Euclidean plane.

If exactly one pair of opposite sides of the hexagon are parallel, then the conclusion of the theorem is that the "Pascal line" determined by the two points of intersection is parallel to the parallel sides of the hexagon. If two pairs of opposite sides are parallel, then all three pairs of opposite sides form pairs of parallel lines and there is no Pascal line in the Euclidean plane (in this case, the line at infinity of the extended Euclidean plane is the Pascal line of the hexagon).

This theorem is a generalization of Pappus's (hexagon) theorem – Pappus's theorem is the special case of a degenerate conic of two lines. Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay povr les coniqves. Par B. P."


...
Wikipedia

...