*** Welcome to piglix ***

Heterochromatin


Heterochromatin is a tightly packed form of DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed, however according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS).

Constitutive heterochromatin can affect the genes near itself (position-effect variegation). It is usually repetitive and forms structural functions such as centromeres or telomeres, in addition to acting as an attractor for other gene-expression or repression signals.

Facultative heterochromatin is the result of genes that are silenced through a mechanism such as histone deacetylation or Piwi-interacting RNA (piRNA) through RNAi. It is not repetitive and shares the compact structure of constitutive heterochromatin. However, under specific developmental or environmental signaling cues, it can lose its condensed structure and become transcriptionally active.

Heterochromatin has been associated with the di- and tri-methylation of H3K9 in certain portions of the genome.

Note that the informal diagram shown here may be in error as to the location of heterochromatin. An inactivated X-chromosome (a.k.a. Barr body) migrates to the nuclear membrane alone, leaving the active X and other chromosomes within the nucleoplasm (away from the membrane in general). Other heterochromatin appear as particles separate from the membrane, "Heterochromatin appears as small, darkly staining, irregular particles scattered throughout the nucleus ..." as shown here: Electron Microscope image of nucleus with heterochromatin particles annotated [1]


...
Wikipedia

...