The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress . The consistency is a simple constant of proportionality, while the flow index measures the degree to which the fluid is shear-thinning or shear-thickening. Ordinary paint is one example of a shear-thinning fluid, while oobleck provides one realization of a shear-thickening fluid. Finally, the yield stress quantifies the amount of stress that the fluid may experience before it yields and begins to flow.
This non-Newtonian fluid model was introduced by Winslow Herschel and Ronald Bulkley in 1926.
The constitutive equation of the Herschel-Bulkley model is commonly written as
where is the shear stress, the shear rate, the yield stress, the consistency index, and the flow index. If the Herschel-Bulkley fluid behaves as a solid, otherwise it behaves as a fluid. For the fluid is shear-thinning, whereas for the fluid is shear-thickening. If and , this model reduces to the Newtonian fluid.