*** Welcome to piglix ***

Herpes simplex research


Herpes simplex research includes all medical research that attempts to prevent, treat, or cure herpes, as well as fundamental research about the nature of herpes. Examples of particular herpes research include drug development, vaccines and genome editing. HSV-1 and HSV-2 are commonly thought of as oral and genital herpes respectively, but other members in the herpes family include chickenpox (varicella/zoster), cytomegalovirus (CMV), and Epstein-Barr (EBV).

Various vaccine candidates have been developed, the first ones in the 1920s, but none has been successful to date.

Due to the genetic similarity of both herpes simplex virus types (HSV-1 and HSV-2), the development of a prophylactic-therapeutic vaccine that proves effective against one type of the virus would likely prove effective for the other virus type, or at least provide most of the necessary fundamentals. As of 2016, several vaccine candidates are in different stages of clinical trials.

An ideal herpes vaccine should induce immune responses adequate to prevent infection. Short of this ideal, a candidate vaccine might be considered successful if it (a) mitigates primary clinical episodes, (b) prevents colonization of the ganglia, (c) helps reduce the frequency or severity of recurrences, and (d) reduces viral shedding in actively infected or asymptomatic individuals.

The chart below is an attempt to list all known proposed vaccines and their characteristics. Please update with any missing information on vaccines only.

(VZV, shingles)

(VZV, shingles)

Diverse subunit HSV vaccines (e.g. Herpevac) have failed to protect humans from acquiring genital herpes in several clinical trials. The success of the chickenpox vaccine demonstrates that a live and appropriately attenuated α-herpesvirus may be used to safely control human disease. A vaccine of this type would present a slow replication process of HSV, thereby also damping down the immune evasion strategies of the virus while simultaneously exposing the host to the full complement of HSV's majority of viral proteins. As a consequence, it is the intent of the vaccine to expose the individual's immune response to the HSV proteins it may have been missing from a wild type virus in order to effectively control the disease. From a historical retrospective, such live attenuated vaccines have had the most success in preventing diseases until today. Dr. William Halford at the Southern Illinois University (SIU) School of Medicine is presently testing a live-attenuated HSV-2 ICP0‾ vaccine. Already proven as safe and effective in studies on animals, eliciting 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine, Halford's vaccine is now currently involved in clinical trials. In 2016, Halford had promising results injecting his vaccine in 20 human subjects, 17 of which got all 3 shots, (the other 3, only 2 shots). All 20 of the participants self-reported an improvement in symptoms, but only 17 received and completed all three dosages. Blot tests showed a clear antibody response, which can not be instigated by a placebo effect.


...
Wikipedia

...