*** Welcome to piglix ***

Hereditary property


In mathematics, a hereditary property is a property of an object, that inherits to all its subobjects, where the term subobject depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory.

In topology, a topological property is said to be hereditary if whenever a topological space has that property, then so does every subspace of it. If the latter is true only for closed subspaces, then the property is called weakly hereditary or closed-hereditary.

For example, second countability and metrisability are hereditary properties. Sequentiality and Hausdorff compactness are weakly hereditary, but not hereditary.Connectivity is not weakly hereditary.

If P is a property of a topological space X and every subspace also has property P, then X is said to be "hereditarily P".

In graph theory, a hereditary property is a property of a graph which also holds for (is "inherited" by) its induced subgraphs. Alternately, a hereditary property is preserved by the removal of vertices. A graph class is said hereditary if it is closed under induced subgraphs. Examples of hereditary graph classes are independent graphs (graphs with no edges), which is a special case (with c = 1) of being c-colorable for some number c, being forests, planar, complete, complete multipartite etc.


...
Wikipedia

...