Hemorrhagic cystitis or Haemorrhagic cystitis is defined by lower urinary tract symptoms that include dysuria, hematuria, and hemorrhage. The disease can occur as a complication of cyclophosphamide, ifosfamide and radiation therapy. In addition to hemorrhagic cystitis, temporary hematuria can also be seen in bladder infection or in children as a result of viral infection.
Causes of hemorrhagic cystitis include chemotherapy (e.g. cyclophosphamide, Ifosfamide), radiation, or infection. Ifosfamide is the most common cause of hemorrhagic cystitis. Radiation-induced hemorrhagic cystitis develops in similar or smaller patient numbers when compared to cyclophosphamide-induced cases.
Adenovirus (particularly serotypes 11 and 21 of subgroup B) is the most common cause of acute viral hemorrhagic cystitis in children, though it can result from BK virus as well. A chemical hemorrhagic cystitis can develop when vaginal products are inadvertently placed in the urethra. Gentian violet douching to treat candidiasis has resulted in hemorrhagic cystitis when the drug was misplaced in the urethra, but this hemorrhagic cystitis resolved spontaneously with cessation of treatment. Accidental urethral placement of contraceptive suppositories has also caused hemorrhagic cystitis in several patients. The bladder irritation was thought to be caused by the spermicidal detergent nonoxynol-9. In the acute setting, the bladder can be copiously irrigated with alkalinized normal saline to minimize bladder irritation.
Although hemorrhagic cystitis post-transplantation/bone marrow transplantation is not technically infectious, a short discussion is in order for completeness. Patients undergoing therapy to suppress the immune system are at risk for hemorrhagic cystitis due to either the direct effects of chemotherapy or activation of dormant viruses in the kidney, ureter, or bladder.
Diagnosis is made by history and examination.
In immunocompromised patients, pus is present in the urine but often no organism can be cultured. In children, polymerase chain reaction sequencing of urine can detect fragments of the infectious agent.