Heliotropism, a form of tropism, is the diurnal motion or seasonal motion of plant parts (flowers or leaves) in response to the direction of the sun. The habit of some plants to move in the direction of the sun was already known by the Ancient Greeks. They named one of those plants after that property Heliotropium, meaning sun turn. The Greeks assumed it to be a passive effect, presumably the loss of fluid on the illuminated side, that did not need further study. Aristotle's logic that plants are passive and immobile organisms prevailed. In the 19th century, however, botanists discovered that growth processes in the plant were involved, and conducted increasingly ingenious experiments. A. P. de Candolle called this phenomenon in any plant heliotropism (1832). It was renamed phototropism in 1892, because it is a response to light rather than to the sun, and because the phototropism of algae in lab studies at that time strongly depended on the brightness (positive phototropic for weak light, and negative phototropic for bright light, like sunlight). A botanist studying this subject in the lab, at the cellular and subcellular level, or using artificial light, is more likely to employ the more abstract word phototropism. The French scientist Jean-Jacques d'Ortous de Mairan was one of the first to study heliotropism when he experimented with the Mimosa pudica plant.
Heliotropic flowers track the sun's motion across the sky from east to west. During the night, the flowers may assume a random orientation, while at dawn they turn again toward the east where the sun rises. The motion is performed by motor cells in a flexible segment just below the flower, called a pulvinus. The motor cells are specialized in pumping potassium ions into nearby tissues, changing their turgor pressure. The segment flexes because the motor cells at the shadow side elongate due to a turgor rise. Heliotropism is a response to light from the sun.
Several hypotheses have been proposed for the occurrence of heliotropism in flowers:
In general, flower heliotropism could increase reproductive success by increasing pollination, fertilization success, and/or seed development, especially in the spring flowers.