Heap leaching is an industrial mining process to extract precious metals, copper, uranium, and other compounds from ore via a series of chemical reactions that absorb specific minerals and then re-separates them after their division from other earth materials. Similar to in situ mining, heap leach mining differs in that it places ore on a liner, then adds the chemicals via drip systems to the ore, whereas in situ mining lacks these liners and pulls pregnant solution up to obtain the minerals. Most mining companies, favor the economic feasibility of the heap leaching, considering that heap leaching is a better alternative to conventional processing (such as flotation, agitation, and vat leaching).
Additionally, dump leaching is an essential part of most copper mining operations and along with other deterministic factors, determines the quality grade of the produced material. Due to the effect that the dump leaching has, i.e. it can contribute substantially to the economic viability of the mining process it is advantageous to include the results of the leaching operation in the economic overall project evaluation. This, in effect, requires that the key controllable variables, which have an effect on the recovery of the metal and the quality of solution coming from a dump leaching process.
The process has ancient origins; one of the classical methods for the manufacture of copperas (iron sulfate) was to heap up iron pyrite and collect the leachate from the heap, which was then boiled with iron to produce iron(II) sulfate
The mined ore is usually crushed into small chunks and heaped on an impermeable plastic and/or clay lined leach pad where it can be irrigated with a leach solution to dissolve the valuable metals. While sprinklers are occasionally used for irrigation, more often operations use drip irrigation to minimize evaporation, provide more uniform distribution of the leach solution, and avoid damaging the exposed mineral. The solution then percolates through the heap and leaches both the target and other minerals. This process, called the "leach cycle," generally takes from one or two months for simple oxide ores (e.g., most gold ores) to two years (for nickel laterite ores). The leach solution containing the dissolved minerals is then collected, treated in a process plant to recover the target mineral and in some cases precipitate other minerals, and then recycled to the heap after reagent levels are adjusted. Ultimate recovery of the target mineral can range from 30% of contained (run-of-mine dump leaching sulfide copper ores) to over 90% for the easiest to leach ores (some oxide gold ores).