A head-mounted display (or helmet-mounted display, for aviation applications), both abbreviated HMD, is a display device, worn on the head or as part of a helmet, that has a small display optic in front of one (monocular HMD) or each eye (binocular HMD). A HMD has many uses including in gaming, aviation, engineering, and medicine.
There is also an optical head-mounted display (OHMD), which is a wearable display that can reflect projected images and allows a user to see through it.
A typical HMD has one or two small displays, with lenses and semi-transparent mirrors embedded in eyeglasses (also termed data glasses), a visor, or a helmet. The display units are miniaturised and may include cathode ray tubes (CRT), liquid crystal displays (LCDs), liquid crystal on silicon (LCos), or organic light-emitting diodes (OLED). Some vendors employ multiple micro-displays to increase total resolution and field of view.
HMDs differ in whether they can display only computer-generated imagery (CGI), or only live imagery from the physical world, or a combination. Most HMDs can display only a computer-generated image, sometimes referred to as a virtual image. Some HMDs can allow a CGI to be superimposed on a real-world view. This is sometimes referred to as augmented reality or mixed reality. Combining real-world view with CGI can be done by projecting the CGI through a partially reflective mirror and viewing the real world directly. This method is often called optical see-through. Combining real-world view with CGI can also be done electronically by accepting video from a camera and mixing it electronically with CGI. This method is often called video see-through.
An optical head-mounted display uses an optical mixer which is made of partly silvered mirrors. It can reflect artificial images, and let real images cross the lens, and let a user look through it.
Various methods have existed for see-through HMD's, most of which can be summarized into two main families based on curved mirrors or waveguides. Curved mirrors have been used by Laster Technologies, and by Vuzix in their Star 1200 product. Various waveguide methods have existed for years. These include diffraction optics, holographic optics, polarized optics, and reflective optics.