*** Welcome to piglix ***

Hash-based message authentication code


In cryptography, a keyed-hash message authentication code (HMAC) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key. It may be used to simultaneously verify both the data integrity and the authentication of a message, as with any MAC. Any cryptographic hash function, such as MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-MD5 or HMAC-SHA1 accordingly. The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash function, the size of its hash output, and on the size and quality of the key.

An iterative hash function breaks up a message into blocks of a fixed size and iterates over them with a compression function. For example, MD5 and SHA-1 operate on 512-bit blocks. The size of the output of HMAC is the same as that of the underlying hash function (128 or 160 bits in the case of MD5 or SHA-1, respectively), although it can be truncated if desired.

HMAC does not encrypt the message. Instead, the message (encrypted or not) must be sent alongside the HMAC hash. Parties with the secret key will hash the message again themselves, and if it is authentic, the received and computed hashes will match.

The definition and analysis of the HMAC construction was first published in 1996 by Mihir Bellare, Ran Canetti, and Hugo Krawczyk, who also wrote RFC 2104. This paper also defined a variant called NMAC that is rarely, if ever, used. FIPS PUB 198 generalizes and standardizes the use of HMACs. HMAC-SHA1 and HMAC-MD5 are used within the IPsec and TLS protocols.


...
Wikipedia

...