*** Welcome to piglix ***

Hall–Janko graph

Hall–Janko graph
Hall janko graph.svg
HJ as Foster graph (90 outer vertices) plus Steiner system S(3,4,10) (10 inner vertices).
Named after Zvonimir Janko
Marshall Hall
Vertices 100
Edges 1800
Radius 2
Diameter 2
Girth 3
Automorphisms 1209600
Chromatic number 10
Properties Strongly regular
Vertex-transitive
Cayley graph
Eulerian
Hamiltonian
Integral

In the mathematical field of graph theory, the Hall–Janko graph, also known as the Hall-Janko-Wales graph, is a 36-regular undirected graph with 100 vertices and 1800 edges.

It is a rank 3 strongly regular graph with parameters (100,36,14,12) and a maximum coclique of size 10. This parameter set is not unique, it is however uniquely determined by its parameters as a rank 3 graph. The Hall–Janko graph was originally constructed by D. Wales to establish the existence of the Hall-Janko group as an index 2 subgroup of its automorphism group.

The Hall–Janko graph can be constructed out of objects in U3(3), the simple group of order 6048:

The characteristic polynomial of the Hall–Janko graph is . Therefore the Hall–Janko graph is an integral graph: its spectrum consists entirely of integers.


...
Wikipedia

...