*** Welcome to piglix ***

Haldane's dilemma


Haldane's dilemma is a limit on the speed of beneficial evolution, first calculated by J. B. S. Haldane in 1957, and clarified further by later commentators.


In the introduction to The Cost of Natural Selection Haldane writes that it is difficult for breeders to simultaneously select all the desired qualities, partly because the required genes may not be found together in the stock; but, writes Haldane,

especially in slowly breeding animals such as cattle, one cannot cull even half the females, even though only one in a hundred of them combines the various qualities desired.

That is, the problem for the cattle breeder is that keeping only the specimens with the desired qualities will lower the reproductive capability too much to keep a useful breeding stock.

Haldane states that this same problem arises with respect to natural selection. Characters that are positively correlated at one time may be negatively correlated at a later time, so simultaneous optimisation of more than one character is a problem also in nature. And, as Haldane writes

[i]n this paper I shall try to make quantitative the fairly obvious statement that natural selection cannot occur with great intensity for a number of characters at once unless they happen to be controlled by the same genes.

In faster breeding species there is less of a problem. Haldane mentions the peppered moth, Biston betularia, whose variation in pigmentation is determined by several alleles at a single gene. One of these alleles, "C", is dominant to all the others, and any CC or Cx moths are dark (where "x" is any other allele). Another allele, "c", is recessive to all the others, and cc moths are light. Against the originally pale lichens the darker moths were easier for birds to pick out, but in areas, where pollution has darkened the lichens, the cc moths had become rare. Haldane mentions that in a single day the frequency of cc moths might be halved.

Another potential problem is that if "ten other independently inherited characters had been subject to selection of the same intensity as that for colour, only , or one in 1024, of the original genotype would have survived." The species would most likely have become extinct; but it might well survive ten other selective periods of comparable selectivity, if they happened in different centuries.


...
Wikipedia

...