*** Welcome to piglix ***

Hagenbach-Bischoff quota


The Hagenbach-Bischoff quota is a formula used in some voting systems based on proportional representation (PR). It is used in some elections held under the largest remainder method of party-list proportional representation as well as in a variant of the D'Hondt method known as the Hagenbach-Bischoff system. The Hagenbach-Bischoff quota is named for its inventor, Swiss professor of physics and mathematics Eduard Hagenbach-Bischoff (1833–1910)

The Hagenbach-Bischoff quota is sometimes referred to as the 'Droop quota' and vice versa (especially in connection with the Largest remainder method) because the two are very similar. However, under the Hagenbach-Bischoff and any smaller (e.g. the Imperiali) quota it is theoretically possible for more candidates to reach the quota than there are seats, whereas under the slightly larger Droop quota (see "Formula" below) this is mathematically impossible. Some scholars of electoral systems argue that the Hagenbach-Bischoff quota should be used for elections under the Single Transferable Vote (STV) system, instead of the Droop quota, because in certain circumstances it is possible for the Droop quota to produce a seemingly undemocratic result. In practice the two quotas are so similar that they are unlikely to produce a different result in anything other than a very small or very close election.

The Hagenbach-Bischoff quota may be given as:

where:

The Droop quota's formula is slightly different in that the quotient arrived at by dividing the total vote by the number of seats plus 1 is rounded up if it is fractional, or if it is a whole number, 1 is added, so that in either case the quotient is increased to the next whole number.

As noted above, while under the Droop quota it is impossible for more candidates in an election to reach the quota than there are seats to be filled, this can theoretically occur under the Hagenbach-Bischoff quota. If this happens the last seat is typically treated as a tie and a winner between the two candidates must be selected.


...
Wikipedia

...