Gyula Kőnig | |
---|---|
Born |
Győr, Kingdom of Hungary |
16 December 1849
Died | 8 April 1913 Budapest, Kingdom of Hungary |
(aged 63)
Nationality | Hungarian |
Fields | Mathematics |
Alma mater | University of Heidelberg |
Doctoral advisor | Leo Königsberger |
Gyula Kőnig (16 December 1849 – 8 April 1913) was a Hungarian mathematician. His mathematical publications in foreign languages appeared under the name Julius König. His son Dénes Kőnig was a graph theorist.
Kőnig's name in Hungarian was Kőnig Gyula or in the more common European name order Gyula Kőnig, but when Kőnig contributed to German mathematical journals he called himself "Julius König."
Gyula Kőnig was active literarily and mathematically. He studied medicine in Vienna and, from 1868 on, in Heidelberg. After having worked, instructed by Hermann von Helmholtz, on electrical stimulation of nerves, he switched to mathematics and obtained his doctorate under the supervision of Leo Königsberger, a mathematician at that time. His thesis Zur Theorie der Modulargleichungen der elliptischen Functionen covers 24 pages. As a post-doc he completed his mathematical studies in Berlin attending lessons by Leopold Kronecker and Karl Weierstraß. He then returned to Budapest where he was appointed as a dozent at the University in 1871. He became a professor at the Teacher's College in Budapest in 1873 and, in the following year, was appointed professor at the Technical University of Budapest. He remained with the university for the rest of his life. He was on three occasions Dean of the Engineering Faculty and also on three occasions was Rector of the University. In 1889 he was elected a member of the Hungarian Academy of Sciences. In 1905 he retired but continued to give lessons on topics of his interest. His son Dénes also became a distinguished mathematician.
Kőnig worked in many mathematical fields. His work on polynomial ideals, discriminants and elimination theory can be considered as a link between Leopold Kronecker and David Hilbert as well as Emmy Noether. Later on his ideas were simplified considerably, to the extent that today they are only of historical interest.