The Gulf of Suez Rift is a continental rift zone that was active between the Late Oligocene (ca. 28 Ma) and the end of the Miocene (ca. 5 Ma). It represented a continuation of the Red Sea Rift until break-up occurred in the middle Miocene, with most of the displacement on the newly developed Red Sea spreading centre being accommodated by the Dead Sea Transform. During its brief post-rift history, the deepest part of the remnant rift topography has been filled by the sea, creating the Gulf of Suez.
North of the Gulf of Suez the rift becomes indistinct and its exact geometry uncertain, linking eventually to the Manzala rift beneath the Nile delta.
The formation of the Red Sea – Gulf of Suez rift system was caused by the anticlockwise rotation of the Arabian Plate with respect to the African Plate. This model is consistent with near orthogonal rifting along the entire length of the rift system. Alternative models that suggest initiation by strike-slip faulting and pull-apart basin development along the axis of the rift have not been supported by detailed studies of the rift geometry.
Towards the end of the Miocene, the Arabian Plate began to collide with the Eurasian Plate leading to changes in the plate configuration, the development of the Dead Sea Transform and cessation in rifting in the Gulf of Suez.
The basement consists of Precambrian rocks of the Arabian-Nubian Shield.Gneisses, volcanics and metasediments are intruded by granites, granodiorites and a suite of dolerite dykes. These rocks contain shear zones, such as the Rehba Shear Zone of western Sinai, that are interpreted to have partly controlled the orientation and location of rift structures.