In mathematics, in the field of homological algebra, the Grothendieck spectral sequence, introduced in Tôhoku paper, is a spectral sequence that computes the derived functors of the composition of two functors , from knowledge of the derived functors of F and G.
If and are two additive and left exact functors between abelian categories such that takes F-acyclic objects (e.g., injective objects) to -acyclic objects and if has enough injectives, then there is a spectral sequence for each object of that admits an F-acyclic resolution: