A grid cell is a type of neuron in the brains of many species that allows them to understand their position in space.
Grid cells were discovered in 2005 by Edvard Moser, May-Britt Moser and their students Torkel Hafting, Marianne Fyhn and Sturla Molden at the Centre for the Biology of Memory (CBM) in Norway. They were awarded the 2014 Nobel Prize in Physiology or Medicine together with John O'Keefe for their discoveries of cells that constitute a positioning system in the brain. The arrangement of spatial firing fields all at equal distances from their neighbors led to a hypothesis that these cells encode a cognitive representation of Euclidean space. The discovery also suggested a mechanism for dynamic computation of self-position based on continuously updated information about position and direction.
In a typical experimental study, an electrode capable of recording the activity of an individual neuron is implanted in the cerebral cortex of a rat, in a section called the dorsomedial entorhinal cortex, and recordings are made as the rat moves around freely in an open arena. For a grid cell, if a dot is placed at the location of the rat's head every time the neuron emits an action potential, then as illustrated in the adjoining figure, these dots build up over time to form a set of small clusters, and the clusters form the vertices of a grid of equilateral triangles. This regular triangle-pattern is what distinguishes grid cells from other types of cells that show spatial firing. By contrast, if a place cell from the rat hippocampus is examined in the same way (i.e., by placing a dot at the location of the rat's head whenever the cell emits an action potential), then the dots build up to form small clusters, but frequently there is only one cluster (one "place field") in a given environment, and even when multiple clusters are seen, there is no perceptible regularity in their arrangement.