*** Welcome to piglix ***

Great icosahedron


In geometry, the great icosahedron is one of four Kepler-Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol {3,5/2} and Coxeter-Dynkin diagram of CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png. It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

The great icosahedron can be constructed a uniform snub, with different colored faces and only tetrahedral symmetry: CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.png. This construction can be called a retrosnub tetrahedron or retrosnub tetratetrahedron, similar to the snub tetrahedron symmetry of the icosahedron, as a partial faceting of the truncated octahedron (or omnitruncated tetrahedron): CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png. It can also be constructed with 2 colors of triangles and pyritohedral symmetry as, CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 4.pngCDel node.png or CDel node h.pngCDel 3x.pngCDel rat.pngCDel d2.pngCDel node h.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.png, and is called a retrosnub octahedron.


...
Wikipedia

...