*** Welcome to piglix ***

Graph minor theorem


In graph theory, the Robertson–Seymour theorem (also called the graph minor theorem) states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is closed under minors can be defined by a finite set of forbidden minors, in the same way that Wagner's theorem characterizes the planar graphs as being the graphs that do not have the complete graph K5 or the complete bipartite graph K3,3 as minors.

The Robertson–Seymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner, although Wagner said he never conjectured it.

A weaker result for trees is implied by Kruskal's tree theorem, which was conjectured in 1937 by Andrew Vázsonyi and proved in 1960 independently by Joseph Kruskal and S. Tarkowski.

A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges of G and deletions of edges and vertices of G. The minor relationship forms a partial order on the set of all distinct finite undirected graphs, as it obeys the three axioms of partial orders: it is reflexive (every graph is a minor of itself), transitive (a minor of a minor of G is itself a minor of G), and antisymmetric (if two graphs G and H are minors of each other, then they must be isomorphic). However, if graphs that are isomorphic may nonetheless be considered as distinct objects, then the minor ordering on graphs forms a preorder, a relation that is reflexive and transitive but not necessarily antisymmetric.


...
Wikipedia

...