*** Welcome to piglix ***

Graph data structure


In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from mathematics, specifically the field of graph theory.

A graph data structure consists of a finite (and possibly mutable) set of vertices or nodes or points, together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as edges, arcs, or lines for an undirected graph and as arrows, directed edges, directed arcs, or directed lines for a directed graph. The vertices may be part of the graph structure, or may be external entities represented by integer indices or references.

A graph data structure may also associate to each edge some edge value, such as a symbolic label or a numeric attribute (cost, capacity, length, etc.).

The basic operations provided by a graph data structure G usually include:

Structures that associate values to the edges usually also provide:

Different data structures for the representation of graphs are used in practice:

The following table gives the time complexity cost of performing various operations on graphs, for each of these representations, with |V | the number of vertices and |E | the number of edges. In the matrix representations, the entries encode the cost of following an edge. The cost of edges that are not present are assumed to be ∞.

Adjacency lists are generally preferred because they efficiently represent sparse graphs. An adjacency matrix is preferred if the graph is dense, that is the number of edges |E | is close to the number of vertices squared, |V |2, or if one must be able to quickly look up if there is an edge connecting two vertices.



...
Wikipedia

...