In mathematics, the Goldbach–Euler theorem (also known as Goldbach's theorem), states that the sum of 1/(p − 1) over the set of perfect powers p, excluding 1 and omitting repetitions, converges to 1:
This result was first published in Euler's 1737 paper "Variæ observationes circa series infinitas". Euler attributed the result to a letter (now lost) from Goldbach.
Goldbach's original proof to Euler involved assigning a constant to the harmonic series: , which is divergent. Such a proof is not considered rigorous by modern standards. It is also interesting to note that there is a strong resemblance between the method of sieving out powers employed in his proof and the method of factorization used to derive Euler's product formula for the Riemann zeta function.
Let x be given by
Since the sum of the reciprocal of every power of two is , subtracting the terms with powers of two from x gives