Sugar_tr | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Sugar_tr | ||||||||
Pfam | PF00083 | ||||||||
Pfam clan | CL0015 | ||||||||
InterPro | IPR005828 | ||||||||
PROSITE | PDOC00190 | ||||||||
TCDB | 2.A.1.1 | ||||||||
OPM superfamily | 15 | ||||||||
OPM protein | 4gc0 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. Because glucose is a vital source of energy for all life, these transporters are present in all phyla. The GLUT or SLC2A family are a protein family that is found in most mammalian cells. 14 GLUTS are encoded by human genome. GLUT is a type of uniporter transporter protein.
Most non-autotrophic cells are unable to produce free glucose because they lack expression of glucose-6-phosphatase and, thus, are involved only in glucose uptake and catabolism. Usually produced only in , in fasting conditions other tissues such as the intestines, muscles, brain, and kidneys are able to produce glucose following activation of gluconeogenesis.
In Saccharomyces cerevisiae glucose transport takes place through facilitated diffusion. The transport proteins are mainly from the Hxt family, but many other transporters have been identified.
GLUTs are integral membrane proteins that contain 12 membrane-spanning helices with both the amino and carboxyl termini exposed on the cytoplasmic side of the plasma membrane. GLUT proteins transport glucose and related hexoses according to a model of alternate conformation, which predicts that the transporter exposes a single substrate binding site toward either the outside or the inside of the cell. Binding of glucose to one site provokes a conformational change associated with transport, and releases glucose to the other side of the membrane. The inner and outer glucose-binding sites are, it seems, located in transmembrane segments 9, 10, 11; also, the QLS motif located in the seventh transmembrane segment could be involved in the selection and affinity of transported substrate.