Glomeromycota | |
---|---|
Gigaspora margarita in association with Lotus corniculatus | |
Scientific classification | |
Kingdom: | Fungi |
Division: |
Glomeromycota C.Walker & A.Schuessler (2001) |
Class: |
Glomeromycetes Caval.-Sm. (1998) |
Orders | |
Glomeromycota (informally glomeromycetes) is one of seven currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the roots or thalli (e.g. in bryophytes) of land plants. Geosiphon pyriformis forms an endocytobiotic association with cyanobacteria, and is the only member of the Glomeromycota known not to form arbuscular mycorrhiza in association with plants. AM formation has not yet been shown for all species. The majority of evidence shows that the Glomeromycota are symbionts with land plants (Nostoc in the case of Geosiphon) for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.
The Glomeromycota have generally coenocytic (occasionally sparsely septate) mycelia and reproduce asexually through blastic development of the hyphal tip to produce spores (Glomerospores) with diameters of 80–500 μm. In some, complex spores form within a terminal saccule. Recently it was shown that Glomus species contain 51 genes encoding all the tools necessary for meiosis. Based on these and related findings, it was suggested that Glomus species may have a cryptic sexual cycle.
Initial studies of the Glomeromycota were based on the morphology of soil-borne sporocarps (spore clusters) found in or near colonized plant roots. Distinguishing features such as wall morphologies, size, shape, color, hyphal attachment and reaction to staining compounds allowed a phylogeny to be constructed. Superficial similarities led to the initial placement of genus Glomus in the unrelated family Endogonaceae. Following broader reviews that cleared up the sporocarp confusion, the Glomeromycota were first proposed in the genera Acaulospora and Gigaspora before being accorded their own order with the three families Glomaceae (now Glomeraceae), Acaulosporaceae and Gigasporaceae.