In mathematical logic, System U and System U− are pure type systems, i.e. special forms of a typed lambda calculus with an arbitrary number of sorts, axioms and rules (or dependencies between the sorts). They were both proved inconsistent by Jean-Yves Girard in 1972. This result led to the realization that Martin-Löf's original 1971 type theory was inconsistent as it allowed the same "Type in Type" behaviour that Girard's paradox exploits.
System U is defined as a pure type system with
System U− is defined the same with the exception of the rule.
The sorts and are conventionally called “Type” and “Kind”, respectively; the sort doesn't have a specific name. The two axioms describe the containment of types in kinds () and kinds in (). Intuitively, the sorts describe a hierarchy in the nature of the terms.