*** Welcome to piglix ***

Gimbal lock


Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.

The word lock is misleading: no gimbal is restrained. All three gimbals can still rotate freely about their respective axes of suspension. Nevertheless, because of the parallel orientation of two of the gimbals' axes there is no gimbal available to accommodate rotation along one axis.

A gimbal is a ring that is suspended so it can rotate about an axis. Gimbals are typically nested one within another to accommodate rotation about multiple axes.

They appear in gyroscopes and in inertial measurement units to allow the inner gimbal's orientation to remain fixed while the outer gimbal suspension assumes any orientation. In compasses and flywheel energy storage mechanisms they allow objects to remain upright. They are used to orient thrusters on rockets.

Some coordinate systems in mathematics behave as if there were real gimbals used to measure the angles, notably Euler angles.

For cases of three or fewer nested gimbals, gimbal lock inevitably occurs at some point in the system due to properties of covering spaces (described below).

While only two specific orientations produce exact gimbal lock, practical mechanical gimbals encounter difficulties near those orientations. When a set of gimbals are close to the locked configuration, small rotations of the gimbal platform require large motions of the surrounding gimbals. Although the ratio is infinite only at the point of gimbal lock, the practical speed and acceleration limits of the gimbals limit the motion of the platform close to that point.

Gimbal lock can occur in gimbal systems with two degrees of freedom such as a theodolite with rotations about an azimuth and elevation in two dimensions. These systems can gimbal lock at zenith and nadir, because at those points azimuth is not well-defined, and rotation in the azimuth direction does not change the direction the theodolite is pointing.


...
Wikipedia

...