In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x (equivalently, of the random variable X having value x) as
Here, E(x) is a function from the space of states to the real numbers; in physics applications, E(x) is interpreted as the energy of the configuration x. The parameter β is a free parameter; in physics, it is the inverse temperature. The normalizing constant Z(β) is the partition function. However, in infinite systems, the total energy is no longer a finite number and cannot be used in the traditional construction of the probability distribution of a canonical ensemble. Traditional approaches in statistical physics studied the limit of intensive properties as the size of a finite system approaches infinity (the thermodynamic limit). When the energy function can be written as a sum of terms that each involve only variables from a finite subsystem, the notion of a Gibbs measure provides an alternative approach. Gibbs measures were proposed by probability theorists such as Dobrushin, Lanford, and Ruelle and provided a framework to directly study infinite systems, instead of taking the limit of finite systems.
A measure is a Gibbs measure if the conditional probabilities it induces on each finite subsystem satisfy a consistency condition: if all degrees of freedom outside the finite subsystem are frozen, the canonical ensemble for the subsystem subject to these boundary conditions matches the probabilities in the Gibbs measure conditional on the frozen degrees of freedom.