The giant-impact hypothesis, sometimes called the Big Splash, or the Theia Impact suggests that the Moon formed out of the debris left over from a collision between Earth and an astronomical body the size of Mars, approximately 4.5 billion years ago, in the Hadean eon; about 20 to 100 million years after the solar system coalesced. The colliding body is sometimes called Theia, from the name of the mythical Greek Titan who was the mother of Selene, the goddess of the Moon. Analysis of lunar rocks, published in 2016, suggests that the impact may have been a direct hit, causing a thorough mixing of both parent bodies.
The giant-impact hypothesis is currently the favoured scientific hypothesis for the formation of the Moon. Supporting evidence includes:
There remain several questions concerning the best current models of the giant-impact hypothesis, however. The energy of such a giant impact is predicted to have heated Earth to produce a global "ocean" of magma, and evidence of the resultant planetary differentiation of the heavier material sinking into Earth's mantle has been documented. However, as of 2015[update] there is no self-consistent model that starts with the giant-impact event and follows the evolution of the debris into a single moon. Other remaining questions include when the Moon lost its share of volatile elements and why Venus—which experienced giant impacts during its formation—does not host a similar moon.
In 1898, George Darwin made the suggestion that the Earth and Moon had once been one body. Darwin's hypothesis was that a molten Moon had been spun from the Earth because of centrifugal forces, and this became the dominant academic explanation. Using Newtonian mechanics, he calculated that the Moon had orbited much more closely in the past and was drifting away from the Earth. This drifting was later confirmed by American and Soviet experiments, using laser ranging targets placed on the Moon.