Gerald Jay Sussman | |
---|---|
Gerry Sussman appearing in a video recording of the SICP lectures
|
|
Born |
United States |
February 8, 1947
Fields | Cognitive Science, Electrical Engineering, Computer Science |
Institutions | MIT |
Alma mater | MIT |
Doctoral advisor |
Marvin Minsky Seymour Papert |
Doctoral students |
W. Daniel Hillis Kenneth D. Forbus Guy L. Steele Jr. David A. McAllester |
Known for | Artificial intelligence |
Notable awards |
IJCAI Computers and Thought Award (1981) ACM (1990) |
Gerald Jay Sussman (born February 8, 1947) is the Panasonic Professor of Electrical Engineering at the Massachusetts Institute of Technology (MIT). He received his S.B. and Ph.D. degrees in mathematics from MIT in 1968 and 1973 respectively. He has been involved in artificial intelligence research at MIT since 1964. His research has centered on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing it to provide more effective methods of science and engineering education. Sussman has also worked in computer languages, in computer architecture and in VLSI design.
Sussman is a coauthor (with Hal Abelson and Julie Sussman) of the introductory computer science textbook Structure and Interpretation of Computer Programs. It was used at MIT for several decades, and has been translated into several languages.
Sussman's contributions to artificial intelligence include problem solving by debugging almost-right plans, propagation of constraints applied to electrical circuit analysis and synthesis, dependency-based explanation and dependency-based backtracking, and various language structures for expressing problem-solving strategies. Sussman and his former student, Guy L. Steele Jr., invented the Scheme programming language in 1975.
Sussman saw that artificial intelligence ideas can be applied to computer-aided design. Sussman developed, with his graduate students, sophisticated computer-aided design tools for VLSI. Steele made the first Scheme chips in 1978. These ideas and the AI-based CAD technology to support them were further developed in the Scheme chips of 1979 and 1981. The technique and experience developed were then used to design other special-purpose computers. Sussman was the principal designer of the Digital Orrery, a machine designed to do high-precision integrations for orbital mechanics experiments. The Orrery was designed and built by a few people in a few months, using AI-based simulation and compilation tools.