*** Welcome to piglix ***

Geosynchronous


A geosynchronous orbit (sometimes abbreviated GSO) is an orbit about the Earth of a satellite with an orbital period that matches the rotation of the Earth on its axis (one sidereal day) of approximately 23 hours 56 minutes and 4 seconds. The synchronization of rotation and orbital period means that, for an observer on the surface of the Earth, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky traces out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. Satellites are typically launched in an eastward direction. Those that orbit closer to the Earth orbit faster than the Earth rotates and so from the Earth they appear to move in an eastward direction while those that orbit beyond geosynchronous orbit distances will appear to move in a westward direction.

A special case of geosynchronous orbit is the geostationary orbit, which is a circular geosynchronous orbit at zero inclination (that is, directly above the equator). A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to ground observers. Popularly or loosely, the term "geosynchronous" may be used to mean geostationary. Specifically, geosynchronous Earth orbit (GEO) may be a synonym for geosynchronous equatorial orbit, or geostationary Earth orbit.Communications satellites are often given geostationary orbits, or close to geostationary, so that the satellite antennas that communicate with them do not have to move, but can be pointed permanently at the fixed location in the sky where the satellite appears.

A semi-synchronous orbit has an orbital period of ½ sidereal day, i.e., 11 h 58 min. Relative to the Earth's surface it has twice this period, and hence appears to go around the Earth once every day. Examples include the Molniya orbit and the orbits of the satellites in the Global Positioning System.


...
Wikipedia

...