Geopolymers are inorganic, typically ceramic, materials that form long-range, covalently bonded, non-crystalline (amorphous) networks. Obsidian is an example of naturally occurring geopolymer. Commercially produced geopolymers may be used for fire- and heat-resistant coatings and adhesives, medicinal applications, high-temperature ceramics, new binders for fire-resistant fiber composites, toxic and radioactive waste encapsulation and as cementing components to make concrete. The properties and uses of geopolymers are being explored in many scientific and industrial disciplines: modern inorganic chemistry, physical chemistry, colloid chemistry, mineralogy, geology, and in other types of engineering process technologies. Raw materials used in the synthesis of silicon-based polymers are mainly rock-forming minerals of geological origin, hence the name: geopolymer. Joseph Davidovits coined the term in 1978 and created the non profit French scientific institution (Association Loi 1901) Institut Géopolymère (Geopolymer Institute).
According to T.F. Yen geopolymers can be classified into two major groups: pure inorganic geopolymers and organic containing geopolymers, synthetic analogues of naturally occurring macromolecules. In the following presentation, a geopolymer is essentially a mineral chemical compound or mixture of compounds consisting of repeating units, for example silico-oxide (-Si-O-Si-O-), silico-aluminate (-Si-O-Al-O-), ferro-silico-aluminate (-Fe-O-Si-O-Al-O-) or alumino-phosphate (-Al-O-P-O-), created through a process of geopolymerization. This mineral synthesis (geosynthesis) was first presented at an IUPAC symposium in 1976.
The microstructure of geopolymers is essentially temperature dependent:
One can distinguish between two synthesis routes:
The alkaline route is the most important in terms of R&D and commercial applications and will be described below. Details on the acidic route are to be found at the references and
In the 1950s, Viktor Glukovsky, of Kiev, USSR, developed concrete materials originally known under the names "soil silicate concretes" and "soil cements", but since the introduction of the geopolymer concept by Joseph Davidovits, the terminology and definitions of 'geopolymer' have become more diverse and often conflicting. The examples below were taken from 2011 scientific publications, written by scientists with different backgrounds.