*** Welcome to piglix ***

Geophysical fluid dynamics


Geophysical fluid dynamics is the study of naturally occurring, large-scale flows on Earth and other planets. It is applied to the motion of fluids in the ocean and outer core, and to gases in the atmosphere of Earth and other planets. Two features that are common to many of the phenomena studied in geophysical fluid dynamics are rotation of the fluid due to the planetary rotation and stratification (layering). The applications of geophysical fluid dynamics do not generally include the circulation of the mantle, which is the subject of geodynamics, or fluid phenomena in the magnetosphere. Flows of smaller scale that are relatively unaffected by Earth's rotation or latitude or substantial layering are not part of GFD.

To describe the flow of geophysical fluids, equations are needed for conservation of momentum (or Newton's second law) and conservation of energy. The former leads to the Navier-Stokes equations. Further approximations are generally made. First, the fluid is assumed to be incompressible. Remarkably, this works well even for a highly compressible fluid like air as long as sound and shock waves can be ignored. Second, the fluid is assumed to be a Newtonian fluid, meaning that there is a linear relation between the shear stress τ and the strain u, for example


...
Wikipedia

...