*** Welcome to piglix ***

Genetic analyses


Genetic analysis is the overall process of studying and researching in fields of science that involve genetics and molecular biology. There are a number of applications that are developed from this research, and these are also considered parts of the process. The base system of analysis revolves around general genetics. Basic studies include identification of genes and inherited disorders. This research has been conducted for centuries on both a large-scale physical observation basis and on a more microscopic scale. Genetic analysis can be used generally to describe methods both used in and resulting from the sciences of genetics and molecular biology, or to applications resulting from this research.

Genetic analysis may be done to identify genetic/inherited disorders and also to make a differential diagnosis in certain somatic diseases such as cancer. Genetic analyses of cancer include detection of mutations, fusion genes, and DNA copy number changes.

Much of the research that set the foundation of genetic analysis began in prehistoric times. Early humans found that they could practice selective breeding to improve crops and animals. They also identified inherited traits in humans that were eliminated over the years. The many genetic analyses gradually evolved over time.

Modern genetic analysis began in the mid-1800s with research conducted by Gregor Mendel. Mendel, who is known as the "father of modern genetics", was inspired to study variation in plants. Between 1856 and 1863, Mendel cultivated and tested some 29,000 pea plants (i.e., Pisum sativum). This study showed that one in four pea plants had purebred recessive alleles, two out of four were hybrid and one out of four were purebred dominant. His experiments led him to make two generalizations, the Law of Segregation and the Law of Independent Assortment, which later became known as Mendel's Laws of Inheritance. Lacking the basic understanding of heredity, Mendel observed various organisms and first utilized genetic analysis to find that traits were inherited from parents and those traits could vary between children. Later, it was found that units within each cell are responsible for these traits. These units are called genes. Each gene is defined by a series of amino acids that create proteins responsible for genetic traits.


...
Wikipedia

...