In computer science, the term automatic programming identifies a type of computer programming in which some mechanism generates a computer program to allow human programmers to write the code at a higher abstraction level.
There has been little agreement on the precise definition of automatic programming, mostly because its meaning has changed over time. David Parnas, tracing the history of "automatic programming" in published research, noted that in the 1940s it described automation of the manual process of punching paper tape. Later it referred to translation of high-level programming languages like Fortran and ALGOL. In fact, one of the earliest programs identifiable as a compiler was called . Parnas concluded that "automatic programming has always been a euphemism for programming in a higher-level language than was then available to the programmer."
Program synthesis is one type of automatic programming where a procedure is created from scratch, based on mathematical requirements.
Mildred Koss, an early UNIVAC programmer, explains: "Writing machine code involved several tedious steps—breaking down a process into discrete instructions, assigning specific memory locations to all the commands, and managing the I/O buffers. After following these steps to implement mathematical routines, a sub-routine library, and sorting programs, our task was to look at the larger programming process. We needed to understand how we might reuse tested code and have the machine help in programming. As we programmed, we examined the process and tried to think of ways to abstract these steps to incorporate them into higher-level language. This led to the development of interpreters, assemblers, compilers, and generators—programs designed to operate on or produce other programs, that is, automatic programming."
Generative programming is a style of computer programming that uses automated source code creation through generic frames, classes, prototypes, templates, aspects, and code generators to improve programmer productivity. It is often related to code-reuse topics such as component-based software engineering and product family engineering.