*** Welcome to piglix ***

Generalized polygon


In combinatorial theory, a generalized polygon is an incidence structure introduced by Jacques Tits in 1959. Generalized n-gons encompass as special cases projective planes (generalized triangles, n = 3) and generalized quadrangles (n = 4). Many generalized polygons arise from groups of Lie type, but there are also exotic ones that cannot be obtained in this way. Generalized polygons satisfying a technical condition known as the Moufang property have been completely classified by Tits and Weiss. Every generalized n-gon with n even is also a near polygon.

A generalized 2-gon (or a digon) is an incidence structure with at least 2 points and 2 lines where each point is incident to each line.

For a generalized n-gon is an incidence structure (), where is the set of points, is the set of lines and is the incidence relation, such that:


...
Wikipedia

...