A general-purpose bomb is an air-dropped bomb intended as a compromise between blast damage, penetration, and fragmentation in explosive effect. They are designed to be effective against the enemy troopes, vehicles, and buildings.
General-purpose (GP) bombs use a thick-walled metal casing with explosive filler (typically TNT, Composition B, or Tritonal in NATO or United States service) composing about 30% to 40% of the bomb's total weight. The British term for a bomb of this type is "medium case" or "medium capacity" (MC). The GP bomb is a common weapon of fighter bomber and attack aircraft because it is useful for a variety of tactical applications and relatively cheap.
General-purpose bombs are often identified by their weight (e.g., 500 lb, 227 kg). In many cases this is strictly a nominal weight, or caliber, and the actual weight of each individual weapon may vary depending on its retardation, fusing, carriage, and guidance systems. For example, the actual weight of a U.S. M117 bomb, nominally 750 lb (340 kg), is typically around 820 lb (372 kg).
Most modern air-dropped GP bombs are designed to minimize drag for external carriage on aircraft lacking bomb bays.
In low-altitude attacks, there is a danger of the attacking aircraft being caught in the blast of its own weapons. To address this problem, GP bombs are often fitted with retarders, parachutes or pop-out fins that slow the bomb's descent to allow the aircraft time to escape the detonation.
GP bombs can be fitted with a variety of fuzes and fins for different uses. One notable example is the "daisy cutter" fuze used in Vietnam War era American weapons, an extended probe designed to ensure that the bomb would detonate on contact (even with foliage) rather than burying itself in earth or mud, which would reduce its effectiveness. (This was not the first instance of such devices. As early as World War II, the Luftwaffe was using extended-nose fuzes on bombs dropped by Stuka dive-bombers and other aircraft for exactly the same reason. A blast several feet above the ground is many times more effective and has a far greater radius than one that is delayed until the bomb is below the surface.)