F414 | |
---|---|
Type | Turbofan |
National origin | United States |
Manufacturer | General Electric |
First run | May 20, 1993 |
Major applications |
Boeing F/A-18E/F Super Hornet Saab Gripen Demo/NG HAL Tejas Mk 2 |
Developed from | General Electric F404 |
The General Electric F414 is an afterburning turbofan engine in the 22,000-pound (98 kN) thrust class produced by GE Aviation. The F414 originated from GE's widely used F404 turbofan from the McDonnell Douglas F/A-18 Hornet, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.
GE evolved the F404 into the F412-GE-400 non-afterburning turbofan for the McDonnell Douglas A-12 Avenger II. After the cancellation of the A-12, the research was directed toward an engine for the F/A-18E/F Super Hornet. GE successfully pitched the F414 as a low-risk derivative of the F404, rather than a riskier new engine. The F414 engine was originally envisioned as not using any materials or processes not used in the F404, and was designed to fit in the same footprint as the F404.
The F414 uses the core of the F412 and its full-authority digital engine control (FADEC), alongside the low-pressure system from the YF120 engine developed for the Advanced Tactical Fighter competition. One of the major differences between the F404 and the F414 is the fan section. The fan of the F414 is larger than that of the F404, but smaller than the fan for the F412. The larger fan section increases airflow mass by 16% and is 5 inches (13 cm) longer. To keep the engine in the F404's footprint, the afterburner section was shortened by 4 in (10 cm) and the combustor shortened by 1 in (2.5 cm). Another change from the F404 is the fact that the first three stages of the high-pressure compressor are blisks rather than dovetailed blades, saving 50 pounds (23 kg) in weight. Furthermore, the FADEC guided F414 uses a fuel actuated "fueldraulic" system to manipulate the convergent-divergent nozzle in the afterburner section, which is a system which uses fuel from the aircraft's fuel system as hydraulic fluid, rather than relying on a separate hydraulic system with its associated fluid reservoir ("fueldraulic" systems have become popular in applications such as this, and even in more major systems in some cases).