*** Welcome to piglix ***

Geiger–Müller tube


The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It was named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

It is a gaseous ionization detector and uses the Townsend avalanche phenomenon to produce an easily detectable electronic pulse from as little as a single ionising event due to a radiation particle. It is used for the detection of gamma radiation, X-rays, and alpha and beta particles. It can also be adapted to detect neutrons. The tube operates in the "Geiger" region of ion pair generation. This is shown on the accompanying plot for gaseous detectors showing ion current against applied voltage.

Whilst it is a robust and inexpensive detector, the G–M is unable to measure high radiation rates efficiently, has a finite life in high radiation areas and cannot measure incident radiation energy, so no spectral information can be generated and there is no discrimination between radiation types, such as between alpha and beta particles.

The tube consists of a chamber filled with a gas mixture at a low pressure of about 0.1 atmosphere. The chamber contains two electrodes, between which there is a potential difference of several hundred volts. The walls of the tube are either metal or have their inside surface coated with a conductor to form the cathode, while the anode is a wire in the center of the chamber.

When ionizing radiation strikes the tube, some molecules of the gas are ionized, either directly by the incident radiation or indirectly by means of secondary electrons produced in the walls of the tube. This creates positively charged ions and electrons, known as ion pairs, in the fill gas. The strong electric field created by the tube's electrodes accelerates the positive ions towards the cathode and the electrons towards the anode. Close to the anode in the "avalanche region" the electrons gain sufficient energy to ionize additional gas molecules and create a large number of electron avalanches which spread along the anode and effectively throughout the avalanche region. This is the "gas multiplication" effect which gives the tube its key characteristic of being able to produce a significant output pulse from a single ionising event.


...
Wikipedia

...