*** Welcome to piglix ***

GeForce 400 Series

GeForce 400 Series
Release date April 12, 2010
Codename GF10x
Architecture Fermi
Models GeForce Series
  • GeForce GT Series
  • GeForce GTS Series
  • GeForce GTX Series
Fabrication process and transistors 260M 40 nm (GT218)
  • 585M 40 nm (GF108)
  • 1.170M 40 nm (GF106)
  • 1.950M 40 nm (GF104)
  • 1.950M 40 nm (GF114)
  • 3.200M 40 nm (GF100)
Cards
Entry-level GT 420
GT 430
Mid-range GT 440
GTS 450
GTX 460
High-end GTX 465
GTX 470
Enthusiast GTX 480
Rendering support
Direct3D Direct3D 11.0
OpenCL OpenCL 1.1
OpenGL OpenGL 4.5
History
Predecessor GeForce 200 series
Successor GeForce 500 series

The GeForce 400 Series is the 11th generation of Nvidia's GeForce graphics processing units, which serves as the introduction for the Fermi (microarchitecture) (GF-codenamed chips), named after the Italian physicist Enrico Fermi. The series was originally slated for production in November 2009, but, after a number of delays, launched on March 26, 2010 with availability following in April 2010.

Nvidia described the Fermi (microarchitecture) as the next major step in its line of GPUs following the Tesla (microarchitecture) used since the G80. The GF100, the first Fermi-architecture product, is large: 512 stream processors, in sixteen groups of 32, and 3.0 billion transistors, manufactured by TSMC in a 40 nm process. It is Nvidia's first chip to support OpenGL 4.0 and Direct3D 11. No products with a fully enabled GF100 GPU were ever sold. The GTX 480 had one streaming multiprocessor disabled. The GTX 470 had two streaming multiprocessors and one memory controller disabled. The GTX 465 had five streaming multiprocessors and two memory controllers disabled. Consumer GeForce cards came with 256MB attached to each of the enabled GDDR5 memory controllers, for a total of 1.5, 1.25 or 1.0GB; the Tesla C2050 had 512MB on each of six controllers, and the Tesla C2070 had 1024MB per controller. Both the Tesla cards had fourteen active groups of stream processors.

The chips found in the high performance Tesla branding feature memory with optional ECC and the ability to perform one double-precision floating-point operation per cycle per core; the consumer GeForce cards are artificially driver restricted to one DP operation per four cycles. With these features, combined with support for Visual Studio and C++, Nvidia targeted professional and commercial markets, as well as use in high performance computing.


...
Wikipedia

...